Probabilistic Processes (122 Computer Science)
Type: Normative
Department: radiophysics and computer technologies
Curriculum
Semester | Credits | Reporting |
6 | 4 | Exam |
Lectures
Semester | Amount of hours | Lecturer | Group(s) |
6 | 32 | Professor Bolesta I. M. | ФеІ-31, ФеІ-32, ФеІ-33, ФеІ-34 |
Laboratory works
Semester | Amount of hours | Group | Teacher(s) |
6 | 32 | ФеІ-31 | Shmyhelskyy Yaroslav, Shmyhelskyy Yaroslav |
ФеІ-32 | Shmyhelskyy Yaroslav, Kushnir Oleksii | ||
ФеІ-33 | Kushnir Oleksii | ||
ФеІ-34 | Kushnir Oleksii |
Опис навчальної дисципліни
The purpose of teaching the course is to master students’ basic theoretical information and practical skills of the course. The program provides students with random processes with: continuous states and continuous and discrete time, and discrete states and discrete and continuous time (Markov chains and Markov processes).
To teach students to use the apparatus of random processes for formalization and mathematical modeling of applied problems for their effective software and hardware implementation. Considerable attention will be paid to the use of Markov processes for description, Markov-type queuing systems.
Learning outcomes:
The student must know:
– basic concepts of the theory of random processes: definition and classification of random processes;
distribution laws and basic characteristics of random processes;
vector and complex random processes;
transformation of random processes and operations on them;
stationary and ergodic random processes;
correlation analysis;
spectral description of random processes;
event flows, their properties and classification.
Markov chains and Markov processes with discrete states and continuous time;
basics of queuing theory.
The student must be able to:
calculate the basic characteristics of random processes according to the given laws of probability distribution;
describe linear transformations of random processes in the black box model;
analyze the processes of stationarity and ergodicity;
describe the processes in the spectral domain;
apply Markov chains and Markov processes with discrete states and continuous time to solve practical problems;
apply the concepts and relations of queuing theory to the analysis of problems.
Recommended Literature
Базова література.
- Сеньо П.С. Випадкові процеси: Підручник. – Львів: Компакт-JIB, 2006.-288 с.
- Рудавський Ю.К., Костробій П.П., Лозинський О.Ю., Уханська Д.В. Елементи теорії випадкових процесів. – Львів: Видавництво Національного університету „Львівська Політехніка”, 2004. – 240 с.
- Гнеденко В.Б.. Коваленко И.Н. Введение в теорию массового обслуживания. – Москва: Наука, 1987. – 336 с.
- Вентцель Е.С. Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. – Москва: Наука, 1969. – 383 с.
- Овчаров Л.А. Прикладные задачи теории массового обслуживания. – Москва: Машиностроение, 1991. – 324 с.
- Володин Б.Г., Ганин М.П., Динер И.Я. Комаров Л.Б., Свешников А.А. Старобин К.Б. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. – Москва: Наука, 1965. – 632 с.
Допоміжна література
- Вентцель Е.С. Теория вероятностей. – Москва: Наука, 1964. – 576 с.
- Коломієць С.В. Теорія випадкових процесів. Практикум. Суми: ДВНЗ УАБС НБУ. – 2011. 80 с.
- Кемени Дж., Снелл Дж. Коненчные цепи Маркова. Пер. з англ. Москва: Наука. 1970 – 271 с.
- Оре О. Теория графов. – М.: Мир, 1980
Інформаційні ресурси
- http://www.wikipedia.org