Modeling of Nanotechnologies (122 CS)
Type: For the student's choice
Department: physical and biomedical electronics
Curriculum
Semester | Credits | Reporting |
9 | 3 | Setoff |
Lectures
Semester | Amount of hours | Lecturer | Group(s) |
10 | 16 | Professor Bordun O. M. | ФеІм-11 |
Laboratory works
Semester | Amount of hours | Group | Teacher(s) |
10 | 16 | ФеІм-11 | Professor Bordun O. M. |
Опис навчальної дисципліни
The discipline connects the analysis of processes in nanotechnology with the tools of modern information technology and plays an integrating role, contributing to the development of skills in using computing systems to solve professional problems. The course is designed to deepen the skills of describing processes in nanotechnology using mathematical models, solving them numerically in the Python programming language and the SAGE mathematical environment, and analyzing them.
The program of the discipline consists of two content modules:
1. Mathematical modeling of the processes of formation of nano-objects.
2. Mathematical modeling of physical processes in nano-objects.
The purpose and main aims and objectives of the discipline “Modeling of Nanotechnologies” are to form the necessary theoretical knowledge and practical skills related to the use of computer modeling methods of technological processes of formation of nanobodies and physical processes in them using libraries of the Python programming language.
Recommended Literature
Основна література:
- 1. K. E. Drexler, Nano systems: Molecular Machinery, Manufacturingand Computation, Wiley, New York (1992).
- 2. Ashrafi A.R., Cataldo F., Iranmanesh A., Ori O. Topological Modelling of Nanostructures and Extended Systems. – Springer Science+Business Media, Dordrecht, 2013. – 584 p.
- 3. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, CRC Press, Boca Raton, Florida (2002), 2nd ed.
- 4. K. Esfarjani and G. A. Mansoori, Handbook of Theoreticaland Computatioanl Nanoscience and Nanotechnology (Forthcoming) (2005).
- 5. W. Yen, S. Shionoya, H. Yamamoto. Phosphor handbook. 2th ed. – The CRC Press, Laser, and Optical Science and Technology Series. – 2007.– р.1056.
- 6. J. Yang and W. Sui; Solving Maxwell-Schrödinger equations for analyses of nano-scale devices, 2007 European Microwave Devices; Munich, Germany; IEEE Explore, doi:10.1109/EUMC.2007.4405149 (2007)
- 7. F. Hirata (Ed.). Molecular Theory of Solvation, Series: Understanding Chemical Reactivity, P. G. Mezey (Ed.), Vol. 24, p. 360, Kluwer Academic, Dordrecht (2003).
Додаткова література:
- 1. Tafazzoli, A.; Sitti, M. Dynamic modes of nanoparticle motion during nanoprobe-based manipulation. In 4th IEEE Conference on Nanotechnology, 2004, Munich, Germany, Aug 16–19, 2004; IEEE Publishing: Piscataway, NJ, U.S.A., 2004; pp 35–37. doi:10.1109/nano.2004.1392241
- 2. Babahosseini, H.; Mahboobi, S. H.; Meghdari, A. Dynamics Modeling of Nanoparticle in AFM-Based Manipulation Using Two Nanoscale Friction Models. In ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, U.S.A., Nov 13–19, 2009; American Society of Mechanical Engineers, 2009; pp 225–234. doi:10.1115/imece2009-11071
- 3. Leonid B. Krivdin. Computational 1 H and 13 C NMR in structural and stereochemical studies. Magnetic Resonance in Chemistry 2022, 60 (8) , 733-828. https://doi.org/10.1002/mrc.5260
- 4. Magdalena Gajda, Łukasz Gajda, Teobald Kupka, Tapas Kar. Local aromaticity in polyacenes manifested by individual proton and carbon shieldings: DFT mapping of aromaticity. Magnetic Resonance in Chemistry 2022, 58 (2) , 145-153. https://doi.org/10.1002/mrc.4967
- 5. Наукові статті у періодичних виданнях за тематикою дисципліни.