Computer Methods in Electronics (122 Computer Science)

Type: For the student's choice

Department: radiophysics and computer technologies

Lectures

SemesterAmount of hoursLecturerGroup(s)
332Professor Bolesta I. M.

Practical

SemesterAmount of hoursGroupTeacher(s)
316Professor Bolesta I. M.

Опис навчальної дисципліни

The discipline is designed to provide graduate students with the necessary knowledge related to the development of modern electronics – nanoplasmonics, which combines nanometer sizes of elements and optical frequencies of their operation.

In particular, various approaches to modeling the phenomena that form the scientific basis of nanoplasmonics: surface plasmon resonance are considered. Issues related to the generation of nanoparticles of different shapes and fractal clusters formed by them, measurement of fractal dimension are considered.

Real and computer experiments are compared and their relationship with theoretical research and modeling. The main types of computer experiments are analyzed – the Monte Carlo method and the method of molecular dynamics.

The purpose of the course is to provide students with knowledge of the latest field of electronics – nanoplasmonics, and the use of modern methods for calculating and modeling the processes underlying nanoplasmonics. Studying the course will contribute to the formation of a modern scientific worldview of graduate students.

Upon completion of this course the student will

Know:

Current trends in electronics;
Relationship between laboratory and computer experiments and computer simulations;
The main types of computer experiments are methods of molecular dynamics and Monte Carlo;
Computational methods of nanoplasmonics – Mi theory, method of discrete dipoles, integration of Maxwell’s equations by the method of finite differences in time domain;
Models and algorithms for creating nanoparticles of different shapes and fractal clusters;

Be able:

Calculate the extinction spectrum of nanoparticles of different shapes and fractal clusters;
Determine the fractal dimension of the generated clusters;
Analyze the influence of various factors on the spectrum of nanoparticles and solve inverse problems.

Recommended Literature

Основна література:

  1. S. A. Maier, Plasmonics: Fundamentals and Applications. New York: Springer, 2007.
  2. Є. Ф. Венгер, А. В. Гончаренко, Л. М. Дмитрук, Оптика малих частинок і дисперсних середовищ. Київ: Наукова думка, 1999.
  3. В. М. Анищик, В. Е. Борисенко, С. А. Жданок, Н. К. Толочко, В. М. Федосюк, Наноматериалы и нанотехнологи. Минск: Изд. Центр БГУ, 2008.
  4. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles.: Wiley, 1998.
  5. M. A. Garcia, Surface plasmons in biomedicine Recent Developments in Bio-Nanocomposites for Biomedical Applications. New York: Novascience Publishers, 2010.
  6. M. L. Brongersma, P. G. Kik, Surface Plasmon Nanophotonic. Berlin: Springer, 1988.
  7.  В. В. Климов, Наноплазмоника. Москва: Физматлит, 2010.

Допоміжна література:

  1.  Болеста І., Демчук. A., Кушнір О., Колич І. “Обчислювальні методи у плазмоніці. 1. Теорія Мі та квазістатичне наближення,” Електроніка та інформаційні технології, т. 9, с. 3–23, 2018.
  2. Болеста І., Демчук. A., Кушнір О., Колич І. “Обчислювальні методи у плазмоніці. 2. Метод дискретно-дипольної апроксимації,” Електроніка та інформаційні технології, т. 10, с. 3–22, 2018.
  3. Болеста І., Демчук. A., Кушнір О. “Обчислювальні методи у плазмоніці. 3. Метод скінченних різниць у часовій області,” Електроніка та інформаційні технології, т. 11, с. 3–20, 2019.
  4. Bolest I., Demchuk, A. “Parallel FDTD simulation using task parallel library (TPL),” Journal of Applied Computer Science , vol. 24, no. 2, pp. 7-16, 2016.
  5. Mie Andersen, Chiara Panosetti, Karsten Reuter, “A Practical Guide to Surface Kinetic Monte Carlo Simulations,” Frontiers in Chemistry, vol. 7, no. 202, 2019
  6. A. Demchuk, I. Bolesta, O. Kushnir, I. Kolych, “The Computational Studies of Plasmon Interaction,” Nanoscale Research Letters, т. 12, № 273, 2017.

Силабус:

Завантажити силабус