Ministry of Education and Science of Ukraine Ivan Franko National University of Lviv Faculty of Electronics and Computer Technologies Department of Optoelectronics and Information Technologies

Approved

Department of Optoelectronics and Information Technologies Faculty of Electronics and Computer Technologies Ivan Franko National University of Lviv (Meeting Minutes #6 from August 29, 2023)

Head of Department _____ Oleh KUSHNIR

Academic Discipline Syllabus "Digital Image Processing and Pattern Recognition" which is taught within the Education Program «Computer Science» for the second (master) higher education level in the Specialty 122 – Computer Science

Discipline	Digital Image Processing and Pattern Recognition						
Address	Building of Faculty of electronics and computer technologies,						
11001055	Ivan Franko National University of Lviv						
	107 Tarnavskoho Street, Lviv						
Faculty	Faculty of electronics and computer technologies,						
1 ucuity	Chair of Optoelectronics and Information technologies						
Branch of	12 Information Technologies,						
science	122 Computer Science						
Instructors	Yuriy Furgala, Ph.D., Accos. Professor						
Contact info	yuriy.furhala@lnu.edu.ua						
	https://electronics.lnu.edu.ua/employee/furhala-yurij-myhajlovych						
Consulting	Consultations on the day of lectures (by prior arrangement) are possible: Room 209,						
resources	Faculty Building 107, Tarnavskyi Street, Lviv. Online consultations via MS Teams are						
	also possible. To agree on the time of online consultations, you should write to the e-						
	mail address of the teacher.						
Discipline	https://electronics.lnu.edu.ua/course/rozpiznavannya-obraziv						
page	http://194.44.208.156/moodle/course/view.php?id=125						
Discipline	The discipline "Pattern recognition" is a selective discipline of in-depth knowledge						
information	formation from the specialty 122 Computer science for the educational and professional						
	program "Computer science", which is taught in the 2nd semester in the amount of 7.0						
	credits (according to the European Credit Transfer System - ECTS)						
Abstract	The educational discipline is designed for students to acquire theoretical knowledge of						
mostract	image processing and pattern recognition, methods of determining key features, their						
	analysis, and assigning them to a certain class. The basis of the course is consideration						
	of mathematical models that ensure the selection of features of images, their						
	classification, methods of analyzing the received information and making a decision on						
	establishing correspondences, as well as software implementation of recognition						
	algorithms in various artificial intelligence systems.						
Goal and	The purpose of studying the discipline "Pattern Recognition" is to acquaint students						
objectives	with the theoretical foundations of solving the problem of pattern recognition, in						
	particular, on images, and the goals are to form practical skills in them that would						
	enable them to effectively apply the acquired knowledge, algorithms, methods and						
	existing libraries and online resources for solving such problems.						
References	Basic:						
	1. Image Processing: Principles and Applications. Rafael C. Gonzalez and Richard E.						
	Woods, Pearson Education Inc., 2008, - 954 p.						
	2. Computer Vision: A Modern Approach. David Lowe. Pearson Education, Inc.2012						
	-793 c. 2 Computer Vision: Algorithms and Applications, Richard Szaliski, Springer: 2nd						
	3. Computer Vision: Algorithms and Applications. Richard Szeliski, Springer; 2nd Edition 2022. – 947p.						
	 Edition 2022. – 947p. Davies E. R. Machine Vision: Theory, Algorithms, Practicalities, Morgan Kaufmann, 						
	San Francisco. 2005 – 200 p.						
	Additional:						
	5. Evaluation of objects recognition efficiency on maps by various methods / Yuriy						
	Furgala, Yuriy Mochulsky, Bohdan Rusyn // Data Stream Mining & Processing						
	(DSMP 2018), IEEE Second International Conference. Lviv, Ukraine August 21-25,						
	2018, pp. 595-598.						
	6. Yu. Furgala, A. Velgosh, B. Rusyn, Yu. Korchak Proceedings of the Xth						
	International Scientific and Practical Conference "Electronics and Information						
	Technologies" (ELIT-2018), Lviv, Ukraine, August 30 - September 2, 2018, pp.						

	A 57 A 60						
	A57-A60 7. A. Fesiuk, Y. Furgala. Key points on the images: comparison of detection b						
	 A. Fesluk, Y. Furgala. Key points on the images: comparison of detection to different methods. Електроніка та інформаційні технології. – 2023. – Вип. 21 						
	С. 15-23.						
	 8. Yufei Bai. Research of image detection and matching algorithms. Proceedings of 						
	3rd International Conference on Signal Processing and Machine Learning. SPN						
Toophing	2023, Chicago, USA, February 25-27, 2023, p.519-526 210 hours totally. Particularly 32 hours of lectures, 48 hours of practice and 130 hours						
Teaching duration							
	of self-training. Upon completion of this course, the learner will:						
Expected							
results	- to know the basic principles of pattern recognition theory using deterministic and						
	probabilistic approaches, features of stochastic classification and optical patter						
	recognition;						
	- to be able to solve problems of image classification using solving functions and						
	distance functions, using appropriate software for this, create software modules based						
	on standard recognition methods from the OpenCV library and use them.						
	After studying the course, applicants will acquire the following competencies (ZK, SK)						
	and program results (PH):						
	ZK1. Ability to abstract thinking, analysis and synthesis.						
	ZK2. Ability to apply knowledge in practical situations.						
	ZK5. Ability to learn and master modern knowledge.						
	ZK6. The ability to be critical and self-critical.						
	ZK7. Ability to generate new ideas (creativity).						
	SK1. Understanding the theoretical foundations of computer science.						
	SK2. The ability to formalize the subject area of a certain project in the form of an						
	appropriate information model.						
	SK3. Ability to use mathematical methods to analyze formalized models of the subject						
	area.						
	SK6. Ability to apply existing and develop new algorithms for solving problems in the						
	field of computer science.						
	SK8. Ability to develop and implement software development projects, including						
	unpredictable conditions, with unclear requirements and the need to apply new strategic						
	approaches, use software tools to organize teamwork on the project.						
	SK9. Ability to develop and administer databases and knowledge bases.						
	SK13. Ability to apply methods and approaches of artificial intelligence, intellectua						
	analysis and data science and optimization approaches to solving specific computer						
	science problems.						
	PH1. Have specialized conceptual knowledge that includes modern scientific						
	achievements in the field of computer science and is the basis for original thinking and						
	conducting research, critical thinking of problems in the field of computer science and						
	at the border of the fields of knowledge.						
	PH3. It is clear and unambiguous to convey one's own knowledge, conclusions and						
	arguments in the field of computer science to specialists and non-specialists, in						
	particular to persons who are studying.						
	PH4. Manage work processes in the field of information technologies, which are						
	complex, unpredictable and require new strategic approaches.						
	PH5. Evaluate the results of teams and collectives in the field of information						
	technologies, ensure the effectiveness of their activities.						
	PH6. Develop a conceptual model of an information or computer system.						
	PH7. Develop and apply mathematical methods for the analysis of information models.						
	PH8. Develop mathematical models and data analysis methods (including large ones).						
	PH9. Develop algorithmic and software for data analysis (including large data).						
L							

	PH10. Design architectural solutions of information and computer systems for various							
	purposes.							
	PH11. Create new algorithms for solving problems in the field of computer science evaluate their effectiveness and limitations on their application.							
	PH12. Design and support databases and knowledge.PH13. Assess and ensure the quality of information and computer systems for various							
	purposes.							
	PH16. Conduct research in the field of computer science.							
	PH19. To analyze the current state and global trends in the development of computer							
	sciences and information technologies. PH 20. To have the methods and means of artificial intelligence, engineering and data							
	analysis, pattern recognition and adaptive processing of information, analysis and processing of natural language, modeling and optimization.							
	PH21. Create new data systems, high-level embedded systems, specialized computer							
	systems and intelligent systems using basic knowledge of hardware and software of							
	microcontrollers and microcomputers.							
Key words	Image processing and analysis, image recognition, image classification, image features							
Course	Full-time study format							
format								
	Conducting lectures, laboratory works and consultations for in-depth understanding of topics							
Topics	See the COURSE SCHEME							
Knowledge	Assessment at the end of the semester							
control								
Pre-requisites	To study the course, graduate students need basic knowledge of the disciplines "Higher							
	mathematics", "Discrete mathematics", "Algorithms and data structures", "Numerical methods", "Probability theory and mathematical statistics", "Object-oriented							
	programming ", "Theory of decision-making".							
Teaching	Lectures, presentations, laboratory and practical works, individual practical tasks,							
methods and	discussions.							
techniques								
Equipment	Multimedia, MS Teams platforms, software: Python, OpenCV							
Assessment	Assessment is carried out throughout the semester and during the assessment session on							
criteria	a 100-point scale. Points are awarded for the following types of work with the							
	following ratio: • practical work: 50% of the grade; the maximum number of points is 50. Jobs #1-3 –							
	10 points, Job #4 $-$ 20 points							
	 theoretical knowledge: 50% of the grade; the maximum number of points is 50. 2 							
	modular surveys of 25 points each.							
	A total of 100 points.							
	Control measures of knowledge are carried out in the form of standard prestical							
	Control measures of knowledge are carried out in the form of standard practical tasks and theoretical questions.							
	Academic integrity: Applicants' papers are expected to contain an original analytical							
	component in reviewing the results obtained. Lack of references to used sources,							
	fabrication of sources, writing off, interference in the work of other acquirers are, but							
	are not limited to, examples of possible academic dishonesty. The discovery of signs of							
	academic dishonesty in the applicant's work is a reason for the teacher not to credit i							
	regardless of the scale of plagiarism or attempted deception. Attending classes is an important component of learning. All applicants are							
	expected to attend all lectures and practical sessions of the course. Students must							
	inform the teacher about the impossibility to attend classes. Applicants are obliged to							
	comply with all the deadlines specified for the performance of the types of work							
	provided for in the course.							

	Literature. All literature that students cannot find on their own will be provided by the							
	teacher exclusively for educational purposes without the right to transfer it to third							
	parties. Applicants are also encouraged to use other literature and sources, in particular							
	scientific literature, which is not among the mandatory and recommended.							
	Scoring policy. The points scored on the current survey, independent work and module							
	controls are taken into account. Attendance at classes and the student's activity during							
	practical classes must be taken into account; it is emphasized that it is inadmissible to							
	miss or be late for classes, use a mobile phone, tablet or other mobile devices during							
	classes for a purpose not related to learning, writing off and plagiarism, late completion							
	of assigned tasks, etc. others							
	Any form of breach of academic integrity will not be tolerated.							
Self-control	The list of questions and tasks for the final assessment of knowledge of all course							
questions	topics before the control papers is placed in the course program.							
Questionary	An evaluation questionnaire for the purpose of assessing the quality of the course will							
	be provided at the end of the course.							

Week	Theme	Type of classes	Literature	Practice	Deadline
1, 2	Introduction. Pattern recognition. The concept of recognition. Basic concepts: image, sign, class. Recognition systems, their classification	Lecture	1, 2	Introduction. Academic integrity.	3rd week
3, 4	Classification of images. Resolving functions. Space of images and space of weights.	Lecture	1, 3	Linear solving functions. Dichotomies.	5th week
5, 6	Recognition of optical images. Search for objects in images. Formation of the alphabet of signs. The correlation comparison method.	Lecture	2, 4, 5	SURF, SIFT, ORB, BRISK methods	7th week
7, 8, 9	Geometric interpretation of classification. Classification of images by minimum distance. Similarity measures. Clustering criteria.	Lecture	2, 4, 6	Euclidean and non- Euclidean measures of distance	9th week
10, 11, 12	Classification of images using the likelihood function. Bayesian classifier. Probability of errors	Lecture	1, 4, 7	Minimax criterion. Neumann-Pearson test	12th week
13, 14	Fourier analysis and image processing. Linear optical systems. Formation of images. Fourier transform. Melin transform.	Lecture	4, 5, 6	Optical filtering	13th week
15, 16	Methods and systems of optical information processing. Coherent optical Fourier processor. Spatial filtering. Optical correlators.	Lecture	5, 6	Van der Lugt correlator	15th week

COURSE SCHEME